A new approach to simulating PHY, MAC and Routing

Nicola Baldo, Federico Maguolo, Marco Miozzo
Channel and PHY issues in network simulation

• Accurate channel and PHY modeling
• Easy prototyping of new wireless technologies
• Spectrum usage modeling
• Inter-technology interference
Accurate Channel and PHY modeling

- Long tradition of simplistic PHY models (e.g. disc propagation model in ns2)
- Dedicated PHY simulators use high-detail
 - e.g., bit level simulations, channel coding, synchronization, equalization...
- Need to simulate a complete system
 (not only PHY layer)
 ⇒ huge computational load
- A reasonable tradeoff needed
- Tunable level of detail is desirable
Modularity & reusability

- Traditionally, for each wireless technology specific channel, PHY & MAC code is developed
- What if...
 - I want to use a different PHY for my MAC?
 - Or a different MAC for my PHY?
 - Or a more detailed channel model?
- Identify reusable components
- Compatibility between modules
Spectrum usage

• Traditionally, spectrum usage not modeled
• New scenarios:
 – Multi-channel ad-hoc/mesh networks
 – Underwater Acoustic Communications
 – Cognitive Radio/Dynamic Spectrum Access
• Need to model how transmissions make use of the spectrum
Inter-technology interference

• e.g., Wifi + bluetooth + WiMax @ 2.4Ghz
• Need modeling of spectrum usage
• Need compatible representation of transmission attributes
• Technology-specific solution to spectrum modeling will not work
Our solution: MPhy

- PHY layer framework for NS-Miracle
- Formal definition of transmission
- Support for channel modeling
- Support for development of PHY modules
- Well-defined PHY-MAC interface
MPhy/MMac architecture

- MPhy/MMac
- specific MAC layer
- MMac
- specific PHY layer
- MPhy
- channel
- to upper layers

- Error model
- Noise calculations
- Interference calculations
- Signal Processing gain
- RF filtering gain
- Antenna gain
- Propagation gain
Transmissions in MPhy

- an event extending over a time interval
- constant TX power
- propagation and RX process modeled by gains applied to TX power
- each transmission has a spectrum occupancy
Transmissions in MPhy (2)

theory

implementation
RF filtering

- RF filtering gain is fraction of RX filter overlapping with TX mask
- Applied to all signals (also interferers)
PHY-MAC interactions

ns2 mobileNode

1. TX:Mac
2. TX:WirelessPhy
3. Channel
4. RX:WirelessPhy
5. RX:Mac

MPhyMac

1. TX:MMac
2. TX:MPhy
3. Channel
4. RX:MPhy
5. RX:MMac

- start tx
- propagation delay
- start rx
- transmission duration
- end tx
- start tx
- propagation delay
- transmission duration
- end tx
- start tx
- acquisition duration
- transmission minus acquisition duration
- end tx
Mphy class hierarchy

- **MPhy**
 - `modulationType: int`
 - `srcSpectralMask: MSpectralMask*`
 - `dstSpectralMask: MSpectralMask*`
 - `srcPosition: Position*`
 - `dstPosition: Position*`
 - `srcAntenna: MAntenna*`
 - `dstAntenna: MAntenna*`
 - `Pt: double`
 - `Pr: double`
 - `Pi: double`
 - `txtime: double`
 - `rctime: double`
 - `duration: double`

- **MAntenna**
 - `getGain(p: Packet*): double`

- **MSpectralMask**
 - `getFreq(): double`
 - `getPropagationSpeed(): double`
 - `getLambdas(): double`
 - `getBandwidth(): double`
 - `getOverlap(rm: MSpectralMask*, p: Packet*): double`

- **MPropagation**
 - `getGain(p: Packet*): double`

- **MCorrelation**
 - `getGain(p: Packet*): double`

- **MInterference**
 - `addToInterference(p: Packet*)`
 - `getInterferencePower(p: Packet*)`
 - `getCurrentTotalPower(): double`

- **Position**
 - `getX(): double`
 - `getY(): double`
 - `getZ(): double`

Subclasses

- **802.11 WiFi**
- **UMTS**
- **Underwater Shannon**
- **BPSK**
- **802.16 WiMAX**

Subclasses

- **UMTS Mobile Equipment**
- **UMTS Base Station**
- **Underwater BPSK**
New routing challenges in network simulation

- Multi-interface nodes
- Interfaces might be equipped with different wireless technologies
- Heterogeneous networks
 - e.g., mixed ad-hoc / infrastructure network
- Different routing metrics
 - Hop count, bandwidth, delay...
Example architectures

LEVEL 4

TRANSPORT

STATIC ROOT

STATIC IEEE802.11

AODV

IEEE802.11

LEVEL 3

AODV

IEEE802.11

STATIC UMTS

LEVEL 1–2

UMTS

LEVEL 4

TRANSPORT

STATIC ROOT

AODV

IEEE802.11

LEVEL 3

AODV

IEEE802.11

STATIC UMTS

LEVEL 1–2

UMTS
Our solution: MRouting

• Framework for the routing layer
• Several routing modules in a tree topology
• Support for routing module development
 – MrclRouting base class
• Support for modules integration and interaction
 – The tree topology is dynamically created in simulation script
 – All the interactions (e.g., to discover routes and forward packets) are internally managed
• Class hierarchy for routing metrics
 – Provides compatibility between routing modules using different metrics
Internal engine to manage packet route resolution considering all the modules (and their metrics) within the routing layer.
MRouting flow chart (2)

MRouting::recv() methods automatically drive packets within the tree of routing modules according to route selected.
MAODV

• Porting of the ns2 AODV module to the MRouting framework
• Backward compatible
• Fully exploitation of MRouting
 – Route Discovery are replied according to the global capabilities of the routing layer
 – Packets may be forwarded to other interfaces
 – Can interoperate with other types of routing (e.g., static routing)