On the Performance of Unsynchronized Distributed MAC Protocols in Deep Water Acoustic Networks

Federico Favaro*, Saiful Azad*, Paolo Casari*, Michele Zorzi*

*Department of Information Engineering, University of Padova, via Gradeno 6/B, 35131 Padova, Italy
§Consorzio Ferrara Ricerche, via Saragat 1, 44122 Ferrara, Italy
{favarofe, azad, casarip, zorzi} @ dei.unipd.it

To compare MAC protocols employing asynchronous channel access in deep water networks
- Throughput
- Packet delivery ratio

To compare the results against those obtained in a shallow water scenario and understand if a sort of «winner» can be identified among the considered schemes

Objectives

Three random access MAC schemes
- CSMA-ALOHA (short channel sensing)
- DACAP (RTS/CTS + warning)
- Tone-Lohi (transmitter-driven tone-based contention)

Results at a glance

CSMA-ALOHA performs better
- Higher throughput because of more persistent access attempts
- The performance of DACAP and Tone-Lohi is unfavorably affected by the duration of the handshakes

Scenarios

Deep water scenario: location, SSP from WOD 2009 and attenuation from Bellhop (5 kHz, "incoherent" mode, darker = stronger signal)
Shallow water scenario: location, SSP from WOD 2009 and attenuation from Bellhop (11.5 kHz, “incoherent” mode, darker = stronger signal)

Protocols

CSMA-ALOHA
Sense the channel for a short, random time (much less than τ_{prop}), transmit if the channel is clear, otherwise repeat sensing until the channel is found free

DACAP
Transmit RTS, wait for CTS, defer DATA transmission to detect ongoing handshakes, back off (or warn the transmitter to back off) if a likely collision is detected.

Tone-Lohi (aggressive version)
Transmit tone and contend, i.e., wait one τ_{prop}, transmit data if no other tone is heard; otherwise back off and repeat the tone transmission, or drop out of another tone is received

Results

Deep water, carrier frequency of 5 kHz
CSMA-ALOHA’s lighter access phase achieves better throughput than DACAP and T-Lohi

Deep water, carrier frequency of 25 kHz
Increased attenuation decreases interference, (CSMA-ALOHA’s performance improves)

Shallow water, carrier fr. of 11.5 and 25 kHz
CSMA-ALOHA yields better throughput; DACAP benefits from a lower transmit power.

Conclusion: CSMA-ALOHA wins over more complicated asynchronous access schemes in the considered scenarios (main reasons: delay and interference)

This work was supported, in part, by Johns Hopkins University, Applied Physics Laboratory’s internal research and development funds.